|
關注:1
2013-05-23 12:21
求翻譯:為了更有效的提取腦電信號的特征值,本文采用了三種方法來對比進行特征值提取:AR模型功率譜密度估計,基于小波包分解系數和子帶能量的特征提取,共同空間模式算法是什么意思?![]() ![]() 為了更有效的提取腦電信號的特征值,本文采用了三種方法來對比進行特征值提取:AR模型功率譜密度估計,基于小波包分解系數和子帶能量的特征提取,共同空間模式算法
問題補充: |
|
2013-05-23 12:21:38
In order to more effectively extract the characteristic value of the EEG are three ways to compare the characteristic value extraction: ar model power spectral density estimation based on wavelet packet decomposition coefficients and sub-band energy feature extraction, the common spatial pattern alg
|
|
2013-05-23 12:23:18
In order to extract the brain more efficient telecommunications, the characteristic values, this is a method to compare 3 to feature Value Extraction: AR model power spectral density estimate, based on wavelet packet decomposition coefficients and with energy, and the feature extraction algorithms c
|
|
2013-05-23 12:24:58
For the more effective extraction brain electrical signal characteristic value, this article used three methods to contrast carries on the characteristic value extraction: The AR model power spectral density estimated, based on small wave packet resolution ratio and innertube energy characteristic e
|
|
2013-05-23 12:26:38
For a more efficient extraction of EEG features value, this article uses a comparison of three methods for feature extraction: AR model power spectrum density estimation based on wavelet packet energy feature extraction and subband decomposition coefficient, common spatial pattern and its algorithm
|
|
2013-05-23 12:28:18
正在翻譯,請等待...
|
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區